
Automatically producing accessible and reusable PDFs with LATEX
Frank Mittelbach

frank.mittelbach@latex-project.org
LATEX Project

Mainz Germany

Ulrike Fischer
fischer@troubleshooting-tex.de

LATEX Project
Bonn Germany

David Carlisle
d.p.carlisle@gmail.com

LATEX Project
Oxford UK

Joseph Wright
joseph@texdev.net

LATEX Project
Ely UK

Abstract
In this application note we outline the goals of the “ LATEX Tagged
PDF” project, describe its current status, show how it can already
now been used to create accessible and reusable PDFs, and outline
our future plans for a successful completion. Further information
can be found at https://latex3.github.io/tagging-project/.

CCS Concepts
• Software and its engineering → Open source model; • Applied
computing → Format and notation; Document metadata; •
Human-centered computing → Accessibility technologies; •
Information systems → Document structure.

Keywords
Accessibility, PDF/UA, Well Tagged PDF, LaTeX, Typesetting sys
tems, Tagging, Reuse

ACM Reference Format:
Frank Mittelbach, Ulrike Fischer, David Carlisle, and Joseph Wright. 2024.
Automatically producing accessible and reusable PDFs with LATEX. In ACM
Symposium on Document Engineering 2024 (DocEng ’24), August 20–23, 2024,
San Jose, CA, USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3685650.3685670

1 Introduction
For more than three decades now, the LATEX system has been used,
widely and successfully, for document production in the STEM
world (Science, Technology, Engineering and Mathematics) and
also in other places where high-quality output is required; but until
recently its focus was solely on page-oriented output for print (on
paper) or as paged output using the PDF format.

Nowadays, for many reasons, great interest has arisen in the
production of PDF documents that are “ accessible” and “ reusable”,
in the sense that they contain information to assist screen reading
software and data extraction, etc., and, more formally, that they

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and /or a fee. Request permissions from permissions@acm.org.
DocEng ’24, August 20–23, 2024, San Jose, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1169-5/24/08
https://doi.org/10.1145/3685650.3685670

adhere to the PDF/UA (Universal Accessibility) standards [1, 2] and
the WTPDF (Well Tagged PDF) standard [8].

However, at present, all methods for producing such “ accessible
and reusable PDFs”, including the use of LATEX, require extensive
manual labor1 during either the preparation of the source or the
post-processing of the PDF (maybe even at both stages); and these
labors often have to be repeated after making even minimal changes
to the (LATEX or other) source.

To improve this situation for authors using the LATEX system,
we started a multi-year project to modernize and enhance LATEX
so that it becomes capable of “ automatically” producing tagged
and accessible PDF, adhering to standards, such as PDF/UA-2 and
WTPDF (or, if necessary, to the older PDF/UA-1), without the need
for any post-processing steps.

At the current time, a prototype version of the enhanced LATEX
system is already capable of generating such accessible and reusable
PDFs, making it one of the first of the few PDF producers to date
that can automatically produce documents according to the new
PDF/UA-2 standard published in 2024.

2 The project setup
The project to enhance LATEX to produce accessible and reusable PDF
was initiated in 2020 with the production of a feasibility study [7],
available from the LATEX Project website [4]. The purpose of this
forty-page document was to provide a high-level, but sufficiently
detailed, understanding of the work and resources necessary when
altering and enhancing the LATEX system in a way that it becomes
capable of automatically producing documents in which the se
mantic structure (that is available in the LATEX source) is properly
carried through to the output format, resulting in a tagged and
accessible PDF. This initial study was addressed primarily to an au
dience within Adobe,2 consisting of engineers and managers with
a deep knowledge of digital typography and electronic publishing
but not necessarily much background within the specialized world
of TEX, LATEX and its role in the accademic world. It therefore started
with a longer overview of the benefits of the project and goes on to
explain why LATEX documents make a good starting point for the
production of tagged and reusable PDF.

For many reasons, last but not least because of the complex
ity and diversity of the LATEX software, the conclusion from the
study was that this undertaking would require several years of
1If not using the already existing code extensions to LATEX provided by the project.
2The public, cited, version of the study was updated in September 2020 with some
minor redactions, corrections and clarifications.

https://orcid.org/0000-0001-6318-1230
https://orcid.org/0009-0009-1456-9592
https://orcid.org/0009-0005-3048-4899
https://orcid.org/0000-0001-9603-1001
https://latex3.github.io/tagging-project/
https://doi.org/10.1145/3685650.3685670
https://doi.org/10.1145/3685650.3685670
https://doi.org/10.1145/3685650.3685670

DocEng ’24, August 20–23, 2024, San Jose, CA, USA Frank Mittelbach, Ulrike Fischer, David Carlisle, and Joseph Wright

concentrated work—an endeavor impossible to deliver by the small
number of volunteer developers in their spare time (or at least not
in a reasonable time frame).3

Fortunately, our Feasibility Study convinced the senior manage
ment of Adobe that this work would be a worthwhile project to
improve the position of PDF in the STEM world and beyond, and
they agreed to finance a major portion of the project work. At this
point, however, Covid intervened and put a spanner in the works,
and the initial commitment was delayed and stretched out so that it
wasn’t possible to keep the schedule, as outlined in the Feasibility
Study. Nevertheless, the project got started, albeit at an initially
slower pace.

2.1 The phases of the project
From the outset, the project was divided into six distinct phases
which were to follow the typical LATEX release cycles, i.e., each
phase ends with a normal LATEX maintenance release. These re
leases normally happen in spring (between May/June) and in fall
(October/November), so typically in half year intervals. For these
phases the work items were organized so that useful intermedi
ate results become available as soon as possible in order to attract
timely feedback and early adoption.4 For example, after phase 2 it
was already possible to automatically generate tagged PDFs for a
restricted set of documents. In phase 3 the coverage was extended;
with support for more constructs offered by extension packages.
This is an ongoing process that will only finish with the conclusion
of the project.

As a realistic scenario we expected that each phase would take
between one and two release cycles, which meant that the overall
project stretches across four to five years as a minimum, but proba
bly somewhat more. Experiences with the first phases have shown
that this was a fairly accurate prediction, somewhat slowed down
by fluctuation in the financial support.

For the remaining phases additional funding will help to ensure
timely delivery of the phase results and may allow the scope to
be broadened in some areas, but as we already made clear in the
Feasibility Study any expectation of earlier delivery would not be
realistic given the complexity of the topic.

It is also important to note that all updates to important exter
nal packages are to be done using external resources, i.e., by the
maintainers of those packages. This assumption is probably not
valid in many cases (see discussion in Feasibility Study, task 2.4.3).
In that case additional work has to be outsourced or undertaken
as part of the project, and this will alter the timeline and funding
requirements for phase 5 and 6, and possibly require a phase 7.

In the following we give a brief summary of the work carried out
(or planned to be carried out) in the individual phases according to
the Feasibility Study.

2.1.1 Phase I — Prepare the ground. The main goal of this phase
was to provide the necessary basis for all the following phases. This
included design and implementation of internal functionality, such

3Despite the fact that millions of users in the STEM world and beyond rely on the qual
ity results of LATEX, the development and maintenance of its core has been undertaken
by a handful of typography enthusiasts during the last three decades.
4Of course, during the various phases much will be ‘ work in progress’ and so we expect
testers and early adopters to work with understanding of such temporary limitations
and of the possibility that extra installation steps, etc., will be necessary.

as low-level manipulation of PDF objects or a proper hook mecha
nism, necessary to support later changes with minimal disruption
for the existing user base. This phase finished in 2021/Q3.

2.1.2 Phase II — Provide tagging of simple documents. The main
goal of this phase was to provide automatic tagging of simple docu
ments, excluding more complicated structures such as mathematics,
tables, etc. This involved setting up the necessary core code that
provided the general mechanisms, dealing with the issues around
automatic detection of paragraph text and tagging it, and by en
abling a subset of the document elements to produce tags. This
phase finished in 2022/Q4.

2.1.3 Phase III — Remove the workarounds needed for tagging. In
this phase we extended the coverage of automatic tagging and
removed several workarounds that had been necessary initially to
provide a working prototype. For more complex structures such
as math and tables, first trial implementations were devised. Both
areas require active research that was initiated at that time.

During the work of phase 2 several new tasks were identified,
e.g., the need for a configuration mechanism complementing the
hook system and a universal key/value mechanism for use with
most document-level environments and commands as an upward-
compatible extension of LATEX. These were added to this phase and
the next, slightly increasing the timeline. This phase finished in
2023/Q4.

2.1.4 Phase IV — Make basic tagging and hyperlinking available.
The original goal of this phase was to incorporate all the code
currently in prototype packages into the kernel itself. However,
during the project we decided on a more gradual approach and
while we now provide an interface to access the code directly from
standard LATEX we nevertheless keep the tagging code for now in
a latex-lab area. One reason for this change was the realization
that the later phases would likely still need some adjustments to
the underlying low-level code that could be more easily provided
in a setup that supports multiple prototypes.

For the same reason the second main task of this phase, to provide
support for hyperlinking directly in the LATEX kernel was delayed,
though initial support work was carried out in 2023/Q4.

Thus, we basically decided that this phase needs to be moved
towards the end and instead immediately started working on tasks
of the next phase.5

2.1.5 Phase V — Provide extended tagging capabilities. The plans for
this phase focus on research, design and implementations for math
and table tagging. Furthermore, interfaces for specifying alternate
text are being developed and added to all relevant elements, such
as graphical elements.

In addition, the coordination of updates to external packages
was planned, to make their document elements “ tagging enabled”,
as the core infrastructure for this was expected to be available as
part of the LATEX kernel.

2.1.6 Phase VI — Handle standards. The main goals of this phase
were to provide support for the relevant PDF standards (as far as

5This is a somewhat typical case for long-running projects initially planned in a
waterfall model: eventually parts of the plan need adjustments to project reality and
increased understanding of the dependencies.

Automatically producing accessible and reusable PDFs with LATEX DocEng ’24, August 20–23, 2024, San Jose, CA, USA

this is possible using LATEX without post-processing the resulting
PDF), and adding kernel support for outlines and associated files.

Furthermore, a number of tasks started in previous phases, e.g.,
the coordination of updates to external packages, would finish then.

2.1.7 Research work. As outlined in the Feasibility Study, there are
areas that will require original research prior to any implementation
effort. The need for such work has become even clearer from current
the discussions in the PDF Reuse TWG (a PDFA Technical Working
Group, covering well tagged PDF [8]).

This research work forms a stream of activities parallel to the
six phases and, while the original project plan shows most of this
to be taking place during the later phases of the project, we have
already started some of the ground work.

3 The current state of the project
As indicated in the previous section, the project team has now
finished phases 1–3 and some aspects planned for the remaining
phases. In particular this means that it is now possible to auto
matically generate accessible and reusable PDFs that adhere to the
standards PDF/A-4f, PDF/UA (1 or 2), and WTPDF; as long as the
LATEX source only uses document elements described in the LATEX
manual [3] or those provided by a small (but growing) number of
important extension packages, such as amsmath, array, biblatex,
hyperref, or longtable to name a few.6

A varied collection of sample documents can be reviewed at the
project GitHub repository [6].

3.1 How to make use of the prototype
The new code can be used with pdfLATEX or the Unicode engine
LuaLATEX.7 The latter is the preferred engine recommended for new
documents.

To enable structured PDF output from a well-behaved LATEX
source one has to add a single \DocumentMetadata declaration at
the very beginning, i.e., before the \documentclass. In there, one
declares important meta data, such as the document language, the
requested PDF version, the standard(s) that the document should
comply with, etc. Depending on the source document, that may be
all that is required.

If targeting an accessibility standard then one of the requirements
is that graphics will either offer an alternative text (to be used by
AT tools) or be marked as strictly presentational. This is achieved
by using an alt={...} key on \includegraphcs or by marking
it with an artifact key—this requires minor modification of the
LATEX source for existing or new documents that use graphics.

The following gives an example; note that the key testphase is
only necessary for enabling specific prototype modules and will
not be required when the project finishes:
\DocumentMetadata{
 lang = de,
 pdfversion = 2.0,
 pdfstandard = ua-2,
 pdfstandard = a-4f, %or a-4

6In particular, this means that out of the box only the standard document classes are
fully supported. Other document classes may or may not work without adjustments.
7XeLATEX is not capable of adding real spaces in the output: a requirement of the PDF
standards.

 testphase = {phase-III,title,table,math,firstaid}
}
\documentclass{...}
\begin{document}
 ...
 \includegraphics[alt={A yellow duck}]{duckimage}
 ...
 \includegraphics[artifact]{decoration}
 ...
\end{document}

So far, only rudimentary support for tables is provided, i.e., by
default, all table cells are marked as data cells. There are possibilities
to declare header rows for individual (or all) tables of a document,
but the interfaces are temporary and not comprehensive. An ap
propriate interface design and its implementation is part of the
ongoing development, see section 4.1.

Math formulas are handled by the current prototype without
any user customization. Some details of the current facilities for
math tagging and our plans for the future are given in section 4.2.

More details on the current interface capabilities and their use
are given in the document “ Using the prototype for accessible PDF”
available from the project GitHub repository [5].

4 Ongoing and future work
With phase 4 being deliberately delayed, the team is now addressing
tasks from phases 5 and 6, in particular developing interfaces for
complex tables and developing best practices for handling math.

Even with the delay to most of phase 4, we have already added the
necessary infrastructure to the LATEX kernel to make it possible to
update external packages and classes to become “ tagging enabled”.

One important part of the future work is therefore to support
such updates by developing the right level of developer guidance
and in general coordinate the effort. Depending on the outcome
here, it will also become clear whether or not there has to be a
phase 7 in which the team takes ownership of the upgrade work for
important extension packages that could not be adjusted by their
maintainers for one or the other reason.

4.1 Tables (tabulars)
Automatically tagging tables in LATEX8 is now possible for simple
tables with a predictable structure: a clear definable number of
header rows and little to no adjustment to the visual formatting.
However, in real documents, tables take on a wide variety of struc
tures and these need to be described correctly in tags for the data
to be extractable.

The method by which tables are implemented in standard LATEX
structures makes this challenging: for efficiency reasons, the data
are not all read into memory in one step. The standard LATEX table
input syntax is designed around this approach, but this makes
some concepts difficult to express. Work on richer table tagging
may therefore require extension or revision of core table input
structures, at least in as far as tagging more complex structures is
concerned. (Whilst complex tables must eventually be handled, the
ability to tag existing tables in many cases will be sufficient.)

8In LATEX, the table environment is simply a container of something which may be a
table; the document environment which creates a row/column grid is called a tabular.

DocEng ’24, August 20–23, 2024, San Jose, CA, USA Frank Mittelbach, Ulrike Fischer, David Carlisle, and Joseph Wright

4.2 Math
PDF 1.7 (and consequentually PDF/UA-1) provides a single mech
anism to tag each math formula with an “Alt” attribute with a
textual description of the formula’s content. PDF 2.0 and PDF/UA-2,
however, offer much richer possibilities for tagging mathematics.
Firstly the PDF 2.0 tags include tags from the MathML namespace
allowing, in principle, direct tagging of the typeset math. Secondly,
each math formula may be associated with one or more “Asso
ciated Files” which are embedded in the PDF. The project code
supports associating formulae with both the original fragment of
TEX source code, and a MathML document. At the current time the
MathML version to be associated with each math fragment must
be provided via an external file, but tools to generate this file using
existing TEX to MathML converters such as TeX4ht or LaTeXML
are in development. The project is also developing a new TEX to
MathML converter implemented directly within the LuaLATEX code.
This should avoid the need to use a separate conversion process.

MathML may provide an accessible reading of the formula, but as
it is associated with the whole equation, it may not be possible for a
screen reader to navigate easily to any subterm of the formula and
start from that point. This could be addressed by directly tagging
the typeset formula with tags from PDF2.0’s MathML namespace,
however producing such tagging while not affecting the visual
layout of the mathematics is technically challenging and will be
addressed in a later phase of the project.

4.3 Semantic structures (a.k.a. tags) in PDF
When PDF 1.3 introduced a structure tree into the format, to sup
port the inclusion of the document’s logical structure, it used only
a fairly minimal set of structure tags that were largely modeled
after the basic HTML tag set. For example, mathematical formulas
had to be tagged as a whole with a single <Formula> tag, with
out a possibility to add further structure within the formula. But
also in other areas the structures were fairly simple and incapable
of capturing more complex semantic information necessary for
good access through AT software or other reuse without applying
heuristics that unfortunately differed from one tool to the next.

This is the tag structure on which the PDF/UA-1 standard is built
upon and it is one of the reasons why more complex PDFs (e.g.,
STEM documents), even if complying to this accessibility standard,
are generally perceived as largely inaccessible.

PDF 2.0 improved a lot on this by providing a much richer tag
set, and the new PDF/UA-2 standard (based on PDF 2.0) is therefore
much better suited to offer real accessibility—once it is generally
supported by AT tools.9 As the result of the project work, LATEX
users are capable of producing many documents complying to the
PDF/UA-2 standard, i.e., providing extended semantic information
based on PDF 2.0 in the output.10

However, even the tag set supported by PDF 2.0 is still fairly lim
ited when it comes to complex documents, e.g., those typically seen

9There is the typical chicken and egg problem: for simple documents PDF/UA-1 was
sufficient and for complex documents the production based on PDF 2.0 was difficult and
required manual work by the authors so was basically not done. As a result, there was
no incentive for tools to support it. With LATEX now becoming capable of automatically
producing such documents the situation is already changing.
10Limited as detailed above to documents using the core LATEX structures, but with a
clear roadmap to wider coverage.

in academic texts in STEM or humanities. Thus, when preparing
a PDF to be PDF/UA-2 compliant, compromises have to be made,
and some of the important structural information is lost when you
transform a LATEX source into a PDF document.11

As part of the project we are therefore developing an extended
tag set that describes the semantic structure of (complex) docu
ments in more granular detail; this will help PDF processors (such
as viewers) that understand this tag set to make better use of a
document’s structure. Ideas from this development may also prove
useful in conjunction with future HTML5 developments.

LATEX is an open system that allows for structural extensions (and
even changes to structures) in every direction. It is therefore not
possible to define a definitive document model that is both valid
and comprehensive for each and every conceivable LATEX document.
However, it is possible to define a document model which captures
the majority of LATEX documents that are out there in the real world.
Combined with methods to extend (and possibly alter) the docu
ment model whenever necessary for special structural extensions
or changes, we are confident that a comprehensive solution can
eventually be provided.

This tag set (called a namespace in PDF 2.0) will thus be no
ticeably more detailed and comprehensive than those offered by
PDF 2.0 and HTML5. We are working with the PDF Association [9]
and various application producers to ensure that this namespace
will, when complete, become a recognized12 resource; it may also
be more generally useful as an XML schema. This will, for example,
allow PDF and other applications to directly use the extended tag
set it provides; and this will enable such applications to make better
use of the information contained in the document, whether for
accessibility support or for other purposes.

For applications that do not (yet) understand this new name
space, we provide role-mapping back into PDF 2.0 (or PDF 1.7) as
necessary; but of course, in that case the more granular information
provided by the tags in the new namespace will get at least partially
lost.

References
[1] ISO 2014. ISO 14289-1:2014 (2nd ed.). https://www.iso.org/standard/64599.html

PDF/UA-1. https://www.iso.org/standard/64599.html.
[2] ISO 2024. ISO/FDIS 14289-2 (1st ed.). https://www.iso.org/standard/82278.html
[3] Leslie Lamport. 1994. LATEX: A Document Preparation System: User’s Guide and

Reference Manual (2nd ed.). Addison Wesley.
[4] LATEX Project Team. [n. d.]. Website of the LATEX Project. https://latex-project.org/.
[5] LATEX Project Team. 2024. Using the prototype for accessible PDF. https://github.

com/latex3/tagging-project/.
[6] LATEX Project Team. 2024. WTPDF / PDF/UA-2 Examples by the LATEX Project.

https://github.com/latex3/tagging-project/discussions/72.
[7] Frank Mittelbach, Ulrike Fischer, and Chris Rowley. 2020. LATEX Tagged PDF Feasibil

ity Evaluation. LATEX Project. https://latex-project.org/publications/indexbyyear/
2020/.

[8] PDF Association 2024. Well-Tagged PDF (WTPDF) (1.0.0 ed.). PDF Association.
https://pdfa.org/wp-content/uploads/2024/02/Well-Tagged-PDF-WTPDF-1.0.pdf

[9] PDF Association (PDFA). [n. d.]. Website of the PDF association. https://pdfa.org/.

Received 10 June 2024; accepted 12 July 2024

11The same is also true if HTML documents are produced: they also cannot (correctly)
express the semantics of many real-life documents. The reason that HTML documents
are nevertheless considered more accessible in the community is due to the fact that
the comparison is made with PDF 1.7 based documents (i.e., PDF/UA-1) and not with
those based on PDF 2.0. It is also caused by the (so far) missing support in PDF viewers
embedded in Web bowsers that typically do not support structured PDFs at all.
12Preferably acknowledged in future revisions of the PDF standard.

https://www.iso.org/standard/64599.html
https://www.iso.org/standard/64599.html
https://www.iso.org/standard/82278.html
https://latex-project.org/
https://github.com/latex3/tagging-project/
https://github.com/latex3/tagging-project/
https://github.com/latex3/tagging-project/discussions/72
https://latex-project.org/publications/indexbyyear/2020/
https://latex-project.org/publications/indexbyyear/2020/
https://pdfa.org/wp-content/uploads/2024/02/Well-Tagged-PDF-WTPDF-1.0.pdf
https://pdfa.org/

	Abstract
	1 Introduction
	2 The project setup
	2.1 The phases of the project

	3 The current state of the project
	3.1 How to make use of the prototype

	4 Ongoing and future work
	4.1 Tables (tabulars)
	4.2 Math
	4.3 Semantic structures (a.k.a. tags) in PDF

	References

